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LETTER TO THE EDITOR

A two-parameter recursion formula for scalar field theory
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Department of Physics and Astronomy, University of Iowa, Iowa City, Iowa 52246, USA

Received 30 July 1996

Abstract. We present a two-parameter family of recursion formulae for scalar field theory.
The first parameter is the dimension(D). The second parameter (ζ ) allows one to continuously
extrapolate between Wilson’s approximate recursion formula and the recursion formula of
Dyson’s hierarchical model. We show numerically that at fixedD, the critical exponentγ
depends continuously onζ . We suggest the use of theζ -independence as a guide to construct
improved recursion formulae.

The renormalization group [1, 2] method has shed light on the related questions of second-
order phase transitions and the infinite cut-off limit of field theories. The practical
application of the method usually requires approximations. In the case of scalar field theory,
a particularly simple approximate renormalization group transformation [1] is Wilson’s
‘approximate recursion formula’ (WARF). The WARF is a simple integral equation with
only one variable and has a free parameter which can be adjusted to approximate aD-
dimensional theory. The WARF can be handled very easily using numerical methods or
various perturbative expansions. The numerical value of the critical exponentγ obtained [1]
with the WARF is 1.218 forD = 3. The WARF can also be used to study non-perturbatively
the cut-off dependence of the renormalized quantities. In the caseD = 4, this can be used
to set triviality bounds [3] on the mass of a scalar particle.

The derivation of the WARF is a masterpiece of quantum calculation. Unfortunately,
it is not based on an expansion in a small parameter and there no obvious way to restore
order by order the details erased by the approximation. Clearly, one needs an organizing
principle to improve the WARF. A group theoretical approach [4] was proposed in the case
of theories with quadratic interactions but this approach fails to control the proliferation of
non-local terms in the case of quartic interactions. At the end of this letter, a new method
of improvement will be suggested.

A renormalization group transformation ‘very closely connected’ [5] to the WARF holds
exactly for Dyson’s hierarchical model [6–8]. The ‘Dyson’s hierarchical model recursion
formula’ (DHMRF) is also an integral equation with one variable, and it also has a free
parameter expressible in terms ofD. For definiteness, the WARF and DHMRF are given
below by equations (7) and (8) withζ = 1 and 1/D, respectively. Roughly speaking [7],
the WARF does in one step what the DHMRF does inD steps. However, this is not an
exact statement because [9] the value ofγ in D = 3 is 1.300. Consequently, the two
models have different physical properties.

Before going further, we would like to emphasize that the difference between the two
values ofγ quoted above is significantly larger than the errors involved in the numerical
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calculations. We have repeated Wilson’s calculation with smaller integration steps, cutting
the integral at larger values and using different criteria to determine criticality. We found that
these changes affectedγ by less than 0.002. We also used Wilson’s numerical integration
method for the DHRMF and found a value of 1.301 forγ . We confirmed [10] this result with
errors smaller than 0.003 using the first 800 coefficients of the high-temperature expansion.
Clearly, the difference between 1.22 and 1.30 is more than 25 times larger than the numerical
errors involved in each calculation.

The WARF and the DHMRF can be seen as two approximate versions of the (much
more complicated) renormalization group transformation for a scalar lattice model with
nearest-neighbour iterations. The WARF integrates 2D field variables at a time keeping
their sum constant while the DHMRF does the same thing but with only two field variables.
The fact that different values ofγ are obtained with the two approximate methods sets a
limit on the accuracy of the approximation. For comparison, the universal value ofγ in
D = 3 for nearest-neighbour models is approximately 1.25.

Ideally, one would like to construct a renormalization procedure for the nearest-
neighbour models corresponding to the integration of

a ≡ 2ζD (1)

field variables at a time and have all the physical quantities independent ofζ . The quantity
2ζ is a scale factor which would play a role similar to the arbitrary scale parameterµ used in
some version [11] of the Callan–Symanzik equations and where one obtains homogeneous
differential equations of the form(d/dµ) (physical quantity) = 0. In this letter, we make a
first step in a similar direction, by introducing a recursion formula whereζ is arbitrary and
which interpolates continuously between the WARF (ζ = 1) and the DHMRF (ζ = 1/D).

This recursion formula can be constructed using Dyson’s hierarchical model (DHM) as
an explicit realization and then extending the results for arbitraryζ . In other words, this
paragraph should first be read withζ taking the fixed value 1/D and considered as well
known results written in a slightly unusual way. We call the sum of the fields in a cube
containingal sitesφl , with l = 1, 2 . . . corresponding to successive renormalization group
transformations. We recall thata is defined in equation (1) and takes the value 2 for DHM.
At criticality, one has the scaling law [12]

〈(φl)2〉 ∝ (ab)2l (2)

where

b ≡ 2(−(D−2)/2)ζ . (3)

Calling Pl(x) dx the probability for(φl/(ab)l) to take a value betweenx andx + dx, we
see that, at criticality

ρl =
∫

dxPl(x)x
2 (4)

tends to a constant for largel. On the other hand, in the high-temperature phase,

〈(φl)2〉 ∝ (a)l (5)

andρl ∝ (ab2)−l . Pl(x) is the main object studied with the renormalization group method.
Using the parametrization

Pl(x) = K e−(1/a)Ql(x) (6)

one can check that the recursion formula

Ql+1(x) = −a ln

[
Il(bx)

Il(0)

]
(7)
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with

Il(x) =
∫ ∞

−∞
dy exp

(
−y2 − 1

2
Ql(x + y)− 1

2
Ql(x − y)

)
(8)

is equivalent to the DHMRF. The equivalence with the formulation usually found in the
literature [8] is made clear by writing the recursion formula for the quantityψl(x) =
Il−1(bx). It is also clear that equations (7) and (8) can be used for an arbitrary value ofζ .
In the case,ζ = 1 one immediately recovers the WARF. In conclusion, equations (7) and
(8) can be used to interpolate continuously between the WARF and the DHMRF.

Note thatb in equation (3) can be seen as the scaling factor of a massless Gaussian
field under a change of scale 2ζ . This remark can be understood better by noting that
the continuous (i.e. unregularized) version [13] of the massless Gaussian DHM is invariant
under certain scale transformations. However, it is adiscrete scale invariance. It seems
plausible that discrete scale invariance allows log-periodic corrections [14] to the scaling
laws. Such corrections were indeed observed [10] very clearly in the case of DHM. Our
goal is to find a formulation where the discrete scale invariance (and the unphysical features
associated with it) would be replaced by a continuous scale invariance.

The critical behaviour associated with the general recursion formulae (7) and (8) can
be studied with the usual methods. One starts with an initial functionQ0(x) = rx2 + gx4

and for fixedg determines the critical valuerc by observing the transition in the behaviour
of ρl defined above. Near this critical value, one obtains the linearized expression

Ql(x) = Qc(x)+ (r − rc)λ
lRc(x) (9)

whereλ is the largest eigenvalue of the renormalization group transformation. From this,
one finds the critical exponent

γ = ln(ab2)

ln(λ)
. (10)

The numerical values for various values ofζ are displayed in figure 1. The results indicate
that γ is a continuous function ofζ . As ζ becomes smaller, a larger number of iterations

Figure 1. The critical exponentγ as a function ofζ for D = 3.
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is necessary in order to obtain the critical value ofr with an acceptable accuracy. For
practical purposes, the number of iterations is of the order of 15/ζ . The limit ζ → 0 is
thus difficult to reach computationally; however, we have found no indication of a drastic
change of behaviour (e.g., a sudden drop to 1) in this limit.

We want to modify equations (7) and (8) in order to obtainζ -independent physical
quantities. In the following, we focus the discussion on the linear behaviour given by
equation (9). First, theζ -independence ofγ requires thatλ(ζ ) = (λ(1))ζ . In addition,
the renormalized coupling constants should also beζ -independent. Defining them with the
procedure of [2] (which can be extended straightforwardly for arbitrarya and b), we see
that the functionsQc andRc should also beζ -independent. This requirement gives useful
information concerning the corrections that need to be made to equations (7) and (8). For
instance, ifQc is a ζ -independent fixed point of such a corrected formula, one can set
ζ = ζ0 + δ in the known part of the recursion formula. Expanding inδ, one can construct,
order by order inδ, ‘counterterms’ that cancel theζ -dependence. For instance at first order
in δ we need to add corrections which have a form similar to the right hand side of (8)
but with insertions ofQl and its first derivative with easily calculable coefficients. The
effects of these corrections will be investigated using numerical methods. We expect that
this procedure can be used to systematically improve the WARF and be applied to realistic
calculations of the critical exponents and the triviality bounds.

One of us (YM) stayed at the Aspen Center for Physics while this work was in progress.
We thank the participants for stimulating conversations.
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